\qquad

C. U. SHAH UNIVERSITY Summer Examination-2022

Subject Name: Operations Research

Subject Code: 5SC01OPR1
Semester: 1

Date: 27/04/2022

Branch: M.Sc. (Mathematics)
Time: 11:00 To 02:00
Marks: 70

Instructions:

(1) Use of Programmable calculator and any other electronic instrument is prohibited.
(2) Instructions written on main answer book are strictly to be obeyed.
(3) Draw neat diagrams and figures (if necessary) at right places.
(4) Assume suitable data if needed.

SECTION - I

Attempt the following questions.

a. Which type of solution exist for the given LP problem.

Maximize $Z=3 x_{1}+4 x_{2}$
Subject to

$$
\begin{aligned}
& x_{1}-x_{2}=-1 \\
& -x_{1}+x_{2} \leq 0
\end{aligned}
$$

and $\quad x_{1}, x_{2} \geq 0$
b. If the optimal simplex table, $c_{j}-z_{j}=0$ value indicates__ $\mathbf{0 1}$
c. Define: Slack variable.
d. What is linear programming problem? 01
e. Define: Convex Set. 01
f. If dual has an unbounded solution, then primal has \qquad .

Q-2 Attempt all questions.

a. Explain the graphical method of solving an LP problem. Also solve the
following LP problem by using graphical method.
Maximize $Z=3 x_{1}-2 x_{2}$
Subject to

$$
\begin{gathered}
x_{1}+x_{2} \leq 1 \\
2 x_{1}+2 x_{2} \geq 4
\end{gathered}
$$

and $\quad x_{1}, x_{2} \geq 0$
b. Write the dual of the following primal LP problems.

1. Maximize $Z=2 x_{1}+5 x_{2}+6 x_{3}$ Subject to

$$
\begin{gathered}
5 x_{1}+6 x_{2}-x_{3} \leq 3 \\
-2 x_{1}+x_{2}+4 x_{3} \leq 4 \\
x_{1}-5 x_{2}+3 x_{3} \leq 1 \\
-3 x_{1}-3 x_{2}+7 x_{3} \leq 6
\end{gathered}
$$

and $\quad x_{1}, x_{2}, x_{3} \geq 0$
2. Minimize $Z=3 x_{1}-2 x_{2}+4 x_{3}$ Subject to

$$
3 x_{1}+5 x_{2}+4 x_{3} \geq 7
$$

$$
6 x_{1}+x_{2}+3 x_{3} \geq 4
$$

$$
7 x_{1}-2 x_{2}-x_{3} \leq 10
$$

$$
x_{1}-2 x_{2}+5 x_{3} \geq 3
$$

$$
4 x_{1}+7 x_{2}-2 x_{3} \geq 2
$$

and $\quad x_{1}, x_{2}, x_{3} \geq 0$
c. Define: Basic solution, Basic feasible solution, Optimum basic feasible solution.

OR

Attempt all questions.
a. Use the simplex method to solve the following LP problem.

Maximize $Z=3 x_{1}+5 x_{2}+4 x_{3}$
Subject to

$$
\begin{aligned}
2 x_{1}+3 x_{2} & \leq 8 \\
2 x_{2}+5 x_{3} & \leq 10 \\
3 x_{1}+2 x_{2}+4 x_{3} & \leq 15
\end{aligned}
$$

and $\quad x_{1}, x_{2}, x_{3} \geq 0$
b. A company produces two types of hats. Each hat of the first type requires twice as much labour time as the second type. If all hats are of the second type only, the company can produce a total of 500 hats a day. The market limits daily sales of the first and second type of 150 and 250 hats. Assuming that the priority per hat are Rs. 8 for type A and Rs. 5 for type B, formulate the problem as a linear programming model in order to determine the number of hats to be produced of each type so as to maximize the profit.
c. Prove that the dual of dual is primal.
\qquad
b. The postal department is considering the purchase of vehicles to pick up and deliver mail from various offices. They are considering three types of vehicles. The cost of each of these are Rs. 5 lakhs, Rs. 10 lakhs and Rs. 8 lakhs per vehicle, respectively. These requires a crew of 2,4 and 4 persons per day considering multiple shifts. They expect these to run for 60,100 and 80 km per day. They expect that the total distance to be covered by the vehicles per day would be 2000 km . Based on the fuel economy, the operating cost per day for these vehicles are Rs. 200, Rs. 350 and Rs. 300 per day. They have a budget restriction of Rs. 1.6 crore and have 80 people available as crew. Formulate a model to minimize the operating costs.
c. Show that the following LP problem

Maximize $Z=4 x_{1}+3 x_{2}$
Subject to

$$
\begin{aligned}
x_{1}-6 x_{2} & \leq 5 \\
3 x_{1} & \leq 11
\end{aligned}
$$

and $\quad x_{1}, x_{2} \geq 0$
has an unbounded solution.

OR

a. Write Kuhn-Tucker condition for maximization type non-linear program. 02
b. Define: Feasible solution of a transportation problem.
c. Which method gives best approximation to find out initial basic feasible 01 solution of transportation problem?
d. What is a necessary and sufficient condition for the existence of a feasible solution to the transportation problem?
e. Write Hessian matrix of order three.
f. What is unbalance assignment problem?

Attempt all questions.
a. Explain the Modified distributive method for solving transportation problems.
b. Solve the following non-linear programming problem using the method of Lagrange's multipliers.
Maximize $Z=5 x_{1}+x_{2}-x_{1}^{2}+2 x_{1} x_{2}-x_{2}^{2}$
Subject to

$$
x_{1}+x_{2}=4
$$

and $x_{1}, x_{2} \geq 0$.

OR

Attempt all questions.
a. Explain the Hungarian method for solving assignment problems.
b. Use the Kuhn-Tucker conditions to solve the following non-linear
programming problem.
Maximize $Z=2 x_{1}^{2}-7 x_{2}^{2}+12 x_{1} x_{2}$
Subject to

$$
2 x_{1}+5 x_{2} \leq 98
$$

and $x_{1}, x_{2} \geq 0$.

Attempt all questions.

a. Solve the following transportation problem using MODI Method.

D_{1}	D_{2}		D_{3}
O_{1}	04	03	02
O_{2}	02	05	00
O_{3}	03	08	06
Demand	08	05	04

Supply
10
13
12
b. Five men are available to do five different jobs. From past records, the time
(in hours) that each man takes to each job is known and given in the following table

		Jobs				
		I	II	III	IV	V
Men	A	2	9	2	7	1
	B	6	8	7	6	1
	C	4	6	5	3	1
	D	4	2	7	3	1
	E	5	3	9	5	1

Find the assignment of men to jobs that will minimize the total time taken.

OR

Attempt all questions.
a. Determine an initial basic feasible solution using (1) North-West corner method, (2) Vogel's approximation method, by considering the following transportation problem:

	D_{1}		D_{2}	D_{3}	D_{4}	D_{5}
Supply						
A	02	11	10	03	07	04
B	01	04	07	02	01	08
C	03	09	04	08	12	0
Demand	03	03	04	05	06	21

b. Use dual simplex method to solve the following LP problem.

Minimize $Z=3 x_{1}+x_{2}$
Subject to

$$
\begin{gathered}
x_{1}+x_{2} \geq 1 \\
2 x_{1}+3 x_{2} \geq 2
\end{gathered}
$$

and $\quad x_{1}, x_{2} \geq 0$

